Gentzen's Consistency Proof - Gentzen's Theorem

Gentzen's Theorem

In 1936 Gerhard Gentzen proved the consistency of first-order arithmetic using combinatorial methods. Gentzen's proof shows much more than merely that first-order arithmetic is consistent. Gentzen showed that the consistency of first-order arithmetic is provable, over the base theory of primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0 (epsilon nought). Informally, this additional principle means that there is a well-ordering on the set of finite rooted trees.

The principle of quantifier-free transfinite induction up to ε0 says that for any formula A(x) with no bound variables transfinite induction up to ε0 holds. ε0 is the first ordinal, such that, i.e. the limit of the sequence:

To express ordinals in the language of arithmetic an ordinal notation is needed, i.e. a way to assign natural numbers to ordinals less than ε0. This can be done in various ways, one example provided by Cantor's normal form theorem. That transfinite induction holds for a formula A(x) means that A does not define an infinite descending sequence of ordinals smaller than ε0 (in which case ε0 would not be well-ordered). Gentzen assigned ordinals smaller than ε0 to proofs in first-order arithmetic and showed that if there is a proof of contradiction, then there is an infinite descending sequence of ordinals < ε0 produced by a primitive recursive operation on proofs corresponding to a quantifier-free formula.

Read more about this topic:  Gentzen's Consistency Proof

Famous quotes containing the word theorem:

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)