Genome Project - Genome Assembly

Genome Assembly

Genome assembly refers to the process of taking a large number of short DNA sequences and putting them back together to create a representation of the original chromosomes from which the DNA originated. In a shotgun sequencing project, all the DNA from a source (usually a single organism, anything from a bacterium to a mammal) is first fractured into millions of small pieces. These pieces are then "read" by automated sequencing machines, which can read up to 1000 nucleotides or bases at a time. (The four bases are adenine, guanine, cytosine, and thymine, represented as AGCT.) A genome assembly algorithm works by taking all the pieces and aligning them to one another, and detecting all places where two of the short sequences, or reads, overlap. These overlapping reads can be merged, and the process continues.

Genome assembly is a very difficult computational problem, made more difficult because many genomes contain large numbers of identical sequences, known as repeats. These repeats can be thousands of nucleotides long, and some occur in thousands of different locations, especially in the large genomes of plants and animals.

The resulting (draft) genome sequence is produced by combining the information sequenced contigs and then employing linking information to create scaffolds. Scaffolds are positioned along the physical map of the chromosomes creating a "golden path".

Read more about this topic:  Genome Project

Famous quotes containing the word assembly:

    There is a sacred horror about everything grand. It is easy to admire mediocrity and hills; but whatever is too lofty, a genius as well as a mountain, an assembly as well as a masterpiece, seen too near, is appalling.
    Victor Hugo (1802–1885)