Generic Property - Definitions: Topology

Definitions: Topology

In topology and algebraic geometry, a generic property is one that holds on a dense open set, or more generally on a residual set (a countable intersection of dense open sets), with the dual concept being a closed nowhere dense set, or more generally a meagre set (a countable union of nowhere dense closed sets).

However, density alone is not sufficient to characterize a generic property. This can be seen even in the real numbers, where both the rational numbers and their complement, the irrational numbers, are dense. Since it does not make sense to say that both a set and its complement exhibit typical behavior, both the rationals and irrationals cannot be examples of sets large enough to be typical. Consequently we rely on the stronger definition above which implies that the irrationals are typical and the rationals are not.

For applications, if a property holds on a residual set, it may not hold for every point, but perturbing it slightly will generally land one inside the residual set (by nowhere density of the components of the meagre set), and these are thus the most important case to address in theorems and algorithms.

Read more about this topic:  Generic Property