History
In the foundational approach of André Weil, developed in his Foundations of Algebraic Geometry, generic points played an important role, but were handled in a different manner. For an algebraic variety V over a field K, generic points of V were a whole class of points of V taking values in a universal domain Ω, an algebraically closed field containing K but also an infinite supply of fresh indeterminates. This approach worked, without any need to deal directly with the topology of V (K-Zariski topology, that is), because the specializations could all be discussed at the field level (as in the valuation theory approach to algebraic geometry, popular in the 1930s).
This was at a cost of there being a huge collection of equally-generic points. Oscar Zariski, a colleague of Weil's at São Paulo just after World War II, always insisted that generic points should be unique. (This can be put back into topologists' terms: Weil's idea fails to give a Kolmogorov space and Zariski thinks in terms of the Kolmogorov quotient.)
In the rapid foundational changes of the 1950s Weil's approach became obsolete. In scheme theory, though, from 1957, generic points returned: this time à la Zariski. For example for R a discrete valuation ring, Spec(R) consists of two points, a generic point (coming from the prime ideal {0}) and a closed point or special point coming from the unique maximal ideal, For morphisms to Spec(R), the fiber above the special point is the special fiber, an important concept for example in reduction modulo p, monodromy theory and other theories about degeneration. The generic fiber, equally, is the fiber above the generic point. Geometry of degeneration is largely then about the passage from generic to special fibers, or in other words how specialization of parameters affects matters. (For a discrete valuation ring the topological space in question is the Sierpinski space of topologists. Other local rings have unique generic and special points, but a more complicated spectrum, since they represent general dimensions. The discrete valuation case is much like the complex unit disk, for these purposes.)
Read more about this topic: Generic Point
Famous quotes containing the word history:
“It is the true office of history to represent the events themselves, together with the counsels, and to leave the observations and conclusions thereupon to the liberty and faculty of every mans judgement.”
—Francis Bacon (15611626)
“This is the greatest week in the history of the world since the Creation, because as a result of what happened in this week, the world is bigger, infinitely.”
—Richard M. Nixon (19131995)
“We aspire to be something more than stupid and timid chattels, pretending to read history and our Bibles, but desecrating every house and every day we breathe in.”
—Henry David Thoreau (18171862)