Generation (particle Physics) - Overview

Overview

Each member of a higher generation has greater mass than the corresponding particle of the previous generation, with the possible exception of the neutrinos (whose small but non-zero masses have not been accurately determined). For example, the first-generation electron has a mass of only 0.511 MeV/c2, the second-generation muon has a mass of 106 MeV/c2, and the third-generation tau has a mass of 1777 MeV/c2, or 1.77 GeV/c2 (almost twice as heavy as a proton). This mass hierarchy causes particles of higher generations to decay to the first generation, which explains why everyday matter (atoms) is made of particles from the first generation. Electrons surround a nucleus made of protons and neutrons, which contain up and down quarks. The second and third generations of charged particles do not occur in normal matter and are only seen in extremely high-energy environments such as cosmic rays or particle accelerators. The term generation was first introduced by Haim Harari in Les Houches Summer School, 1976.

Neutrinos of all generations stream throughout the universe but rarely interact with normal matter. It is hoped that a comprehensive understanding of the relationship between the generations of the leptons may eventually explain the ratio of masses of the fundamental particles, and shed further light on the nature of mass generally, from a quantum perspective.

Read more about this topic:  Generation (particle Physics)