Generalized Continued Fraction - Continued Fractions and Series

Continued Fractions and Series

Euler proved the following identity:


a_0 + a_0a_1 + a_0a_1a_2 + \cdots + a_0a_1a_2\cdots a_n =
\frac{a_0}{1-}
\frac{a_1}{1+a_1-}
\frac{a_2}{1+a_2-}\cdots
\frac{a_{n}}{1+a_n}.\,

From this many other results can be derived, such as


\frac{1}{u_1}+
\frac{1}{u_2}+
\frac{1}{u_3}+
\cdots+
\frac{1}{u_n} =
\frac{1}{u_1-}
\frac{u_1^2}{u_1+u_2-}
\frac{u_2^2}{u_2+u_3-}\cdots
\frac{u_{n-1}^2}{u_{n-1}+u_n},\,

and


\frac{1}{a_0} + \frac{x}{a_0a_1} + \frac{x^2}{a_0a_1a_2} + \cdots +
\frac{x^n}{a_0a_1a_2 \ldots a_n} =
\frac{1}{a_0-}
\frac{a_0x}{a_1+x-}
\frac{a_1x}{a_2+x-}\cdots
\frac{a_{n-1}x}{a_n-x}.\,

Euler's formula connecting continued fractions and series is the motivation for the fundamental inequalities, and also the basis of elementary approaches to the convergence problem.

Read more about this topic:  Generalized Continued Fraction

Famous quotes containing the words continued and/or series:

    There is not any present moment that is unconnected with some future one. The life of every man is a continued chain of incidents, each link of which hangs upon the former. The transition from cause to effect, from event to event, is often carried on by secret steps, which our foresight cannot divine, and our sagacity is unable to trace. Evil may at some future period bring forth good; and good may bring forth evil, both equally unexpected.
    Joseph Addison (1672–1719)

    Every man sees in his relatives, and especially in his cousins, a series of grotesque caricatures of himself.
    —H.L. (Henry Lewis)