Continued Fractions and Series
Euler proved the following identity:
From this many other results can be derived, such as
and
Euler's formula connecting continued fractions and series is the motivation for the fundamental inequalities, and also the basis of elementary approaches to the convergence problem.
Read more about this topic: Generalized Continued Fraction
Famous quotes containing the words continued and/or series:
“If my sons are to become the kind of men our daughters would be pleased to live among, attention to domestic details is critical. The hostilities that arise over housework...are crushing the daughters of my generation....Change takes time, but mens continued obliviousness to home responsibilities is causing women everywhere to expire of trivialities.”
—Mary Kay Blakely (20th century)
“There is in every either-or a certain naivete which may well befit the evaluator, but ill- becomes the thinker, for whom opposites dissolve in series of transitions.”
—Robert Musil (18801942)