History
Soon after publishing the special theory of relativity in 1905, Einstein started thinking about how to incorporate gravity into his new relativistic framework. In 1907, beginning with a simple thought experiment involving an observer in free fall, he embarked on what would be an eight-year search for a relativistic theory of gravity. After numerous detours and false starts, his work culminated in the presentation to the Prussian Academy of Science in November 1915 of what are now known as the Einstein field equations. These equations specify how the geometry of space and time is influenced by whatever matter is present, and form the core of Einstein's general theory of relativity.
The Einstein field equations are nonlinear and very difficult to solve. Einstein used approximation methods in working out initial predictions of the theory. But as early as 1916, the astrophysicist Karl Schwarzschild found the first non-trivial exact solution to the Einstein field equations, the so-called Schwarzschild metric. This solution laid the groundwork for the description of the final stages of gravitational collapse, and the objects known today as black holes. In the same year, the first steps towards generalizing Schwarzschild's solution to electrically charged objects were taken, which eventually resulted in the Reissner–Nordström solution, now associated with electrically charged black holes. In 1917, Einstein applied his theory to the universe as a whole, initiating the field of relativistic cosmology. In line with contemporary thinking, he assumed a static universe, adding a new parameter to his original field equations—the cosmological constant—to reproduce that "observation". By 1929, however, the work of Hubble and others had shown that our universe is expanding. This is readily described by the expanding cosmological solutions found by Friedmann in 1922, which do not require a cosmological constant. Lemaître used these solutions to formulate the earliest version of the Big Bang models, in which our universe has evolved from an extremely hot and dense earlier state. Einstein later declared the cosmological constant the biggest blunder of his life.
During that period, general relativity remained something of a curiosity among physical theories. It was clearly superior to Newtonian gravity, being consistent with special relativity and accounting for several effects unexplained by the Newtonian theory. Einstein himself had shown in 1915 how his theory explained the anomalous perihelion advance of the planet Mercury without any arbitrary parameters ("fudge factors"). Similarly, a 1919 expedition led by Eddington confirmed general relativity's prediction for the deflection of starlight by the Sun during the total solar eclipse of May 29, 1919, making Einstein instantly famous. Yet the theory entered the mainstream of theoretical physics and astrophysics only with the developments between approximately 1960 and 1975, now known as the golden age of general relativity. Physicists began to understand the concept of a black hole, and to identify quasars as one of these objects' astrophysical manifestations. Ever more precise solar system tests confirmed the theory's predictive power, and relativistic cosmology, too, became amenable to direct observational tests.
Read more about this topic: General Relativity
Famous quotes containing the word history:
“We said that the history of mankind depicts man; in the same way one can maintain that the history of science is science itself.”
—Johann Wolfgang Von Goethe (17491832)
“False history gets made all day, any day,
the truth of the new is never on the news
False history gets written every day
...
the lesbian archaeologist watches herself
sifting her own life out from the shards shes piecing,
asking the clay all questions but her own.”
—Adrienne Rich (b. 1929)
“Let it suffice that in the light of these two facts, namely, that the mind is One, and that nature is its correlative, history is to be read and written.”
—Ralph Waldo Emerson (18031882)