General Linear Group - General Linear Group of A Vector Space

General Linear Group of A Vector Space

If V is a vector space over the field F, the general linear group of V, written GL(V) or Aut(V), is the group of all automorphisms of V, i.e. the set of all bijective linear transformations VV, together with functional composition as group operation. If V has finite dimension n, then GL(V) and GL(n, F) are isomorphic. The isomorphism is not canonical; it depends on a choice of basis in V. Given a basis (e1, ..., en) of V and an automorphism T in GL(V), we have

for some constants ajk in F; the matrix corresponding to T is then just the matrix with entries given by the ajk.

In a similar way, for a commutative ring R the group GL(n, R) may be interpreted as the group of automorphisms of a free R-module M of rank n. One can also define GL(M) for any R-module, but in general this is not isomorphic to GL(n, R) (for any n).

Read more about this topic:  General Linear Group

Famous quotes containing the words general, group and/or space:

    There is absolutely no evidence—developmental or otherwise—to support separating twins in school as a general policy. . . . The best policy seems to be no policy at all, which means that each year, you and your children need to decide what will work best for you.
    Pamela Patrick Novotny (20th century)

    Caprice, independence and rebellion, which are opposed to the social order, are essential to the good health of an ethnic group. We shall measure the good health of this group by the number of its delinquents. Nothing is more immobilizing than the spirit of deference.
    Jean Dubuffet (1901–1985)

    ... the movie woman’s world is designed to remind us that a woman may live in a mansion, an apartment, or a yurt, but it’s all the same thing because what she really lives in is the body of a woman, and that body is allowed to occupy space only according to the dictates of polite society.
    Jeanine Basinger (b. 1936)