General Linear Group of A Vector Space
If V is a vector space over the field F, the general linear group of V, written GL(V) or Aut(V), is the group of all automorphisms of V, i.e. the set of all bijective linear transformations V → V, together with functional composition as group operation. If V has finite dimension n, then GL(V) and GL(n, F) are isomorphic. The isomorphism is not canonical; it depends on a choice of basis in V. Given a basis (e1, ..., en) of V and an automorphism T in GL(V), we have
for some constants ajk in F; the matrix corresponding to T is then just the matrix with entries given by the ajk.
In a similar way, for a commutative ring R the group GL(n, R) may be interpreted as the group of automorphisms of a free R-module M of rank n. One can also define GL(M) for any R-module, but in general this is not isomorphic to GL(n, R) (for any n).
Read more about this topic: General Linear Group
Famous quotes containing the words general, group and/or space:
“In communist society, where nobody has one exclusive sphere of activity but each can become accomplished in any branch he wishes, society regulates the general production and thus makes it possible for me to do one thing today and another tomorrow, to hunt in the morning, fish in the afternoon, rear cattle in the evening, criticize after dinner, just as I have a mind, without ever becoming hunter, fisherman, shepherd or critic.”
—Karl Marx (18181883)
“Caprice, independence and rebellion, which are opposed to the social order, are essential to the good health of an ethnic group. We shall measure the good health of this group by the number of its delinquents. Nothing is more immobilizing than the spirit of deference.”
—Jean Dubuffet (19011985)
“In the tale properwhere there is no space for development of character or for great profusion and variety of incidentmere construction is, of course, far more imperatively demanded than in the novel.”
—Edgar Allan Poe (18091849)