General Linear Group - General Linear Group of A Vector Space

General Linear Group of A Vector Space

If V is a vector space over the field F, the general linear group of V, written GL(V) or Aut(V), is the group of all automorphisms of V, i.e. the set of all bijective linear transformations VV, together with functional composition as group operation. If V has finite dimension n, then GL(V) and GL(n, F) are isomorphic. The isomorphism is not canonical; it depends on a choice of basis in V. Given a basis (e1, ..., en) of V and an automorphism T in GL(V), we have

for some constants ajk in F; the matrix corresponding to T is then just the matrix with entries given by the ajk.

In a similar way, for a commutative ring R the group GL(n, R) may be interpreted as the group of automorphisms of a free R-module M of rank n. One can also define GL(M) for any R-module, but in general this is not isomorphic to GL(n, R) (for any n).

Read more about this topic:  General Linear Group

Famous quotes containing the words general, group and/or space:

    The reputation of generosity is to be purchased pretty cheap; it does not depend so much upon a man’s general expense, as it does upon his giving handsomely where it is proper to give at all. A man, for instance, who should give a servant four shillings, would pass for covetous, while he who gave him a crown, would be reckoned generous; so that the difference of those two opposite characters, turns upon one shilling.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    It is not God that is worshipped but the group or authority that claims to speak in His name. Sin becomes disobedience to authority not violation of integrity.
    Sarvepalli, Sir Radhakrishnan (1888–1975)

    At first thy little being came:
    If nothing once, you nothing lose,
    For when you die you are the same;
    The space between, is but an hour,
    The frail duration of a flower.
    Philip Freneau (1752–1832)