GCD Domain

In mathematics, a GCD domain is an integral domain R with the property that any two non-zero elements have a greatest common divisor (GCD). Equivalently, any two non-zero elements of R have a least common multiple (LCM).

A GCD domain generalizes a unique factorization domain to the non-Noetherian setting in the following sense: an integral domain is a UFD if and only if it is a GCD domain satisfying the ascending chain condition on principal ideals (and in particular if it is Noetherian).

Read more about GCD Domain:  Properties, Examples

Famous quotes containing the word domain:

    Without metaphor the handling of general concepts such as culture and civilization becomes impossible, and that of disease and disorder is the obvious one for the case in point. Is not crisis itself a concept we owe to Hippocrates? In the social and cultural domain no metaphor is more apt than the pathological one.
    Johan Huizinga (1872–1945)