Definition of The Discrete GFF
Let P(x, y) be the transition kernel of the Markov chain given by a random walk on a finite graph G(V, E). Let U be a fixed non-empty subset of the vertices V, and take the set of all real-valued functions φ with some prescribed values on U. We then define a Hamiltonian by
Then, the random function with probability density proportional to exp(−H(φ)) with respect to the Lebesgue measure on RV−U is called the discrete GFF with boundary U.
It is not hard to show that the expected value is the discrete harmonic extension of the boundary values from U (harmonic with respect to the transition kernel P), and the covariances Cov are equal to the discrete Green's function G(x, y).
So, in one sentence, the discrete GFF is the Gaussian random field on V with covariance structure given by the Green's function associated to the transition kernel P.
Read more about this topic: Gaussian Free Field
Famous quotes containing the words definition of, definition and/or discrete:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)
“The mastery of ones phonemes may be compared to the violinists mastery of fingering. The violin string lends itself to a continuous gradation of tones, but the musician learns the discrete intervals at which to stop the string in order to play the conventional notes. We sound our phonemes like poor violinists, approximating each time to a fancied norm, and we receive our neighbors renderings indulgently, mentally rectifying the more glaring inaccuracies.”
—W.V. Quine (b. 1908)