Gamma Ray - Uses

Uses

Gamma rays travel to Earth across vast distances of the universe, only to be absorbed by Earth's atmosphere. Different wavelengths of light penetrate Earth's atmosphere to different depths. Instruments aboard high-altitude balloons and such satellites as the Compton Observatory provide our only view of the gamma spectrum sky.

Gamma-induced molecular changes can also be used to alter the properties of semi-precious stones, and is often used to change white topaz into blue topaz.

Non-contact industrial sensors used in the Refining, Mining, Chemical, Food, Soaps and Detergents, and Pulp and Paper industries, in applications measuring levels, density, and thicknesses commonly use sources of gamma. Typically these use Co-60 or Cs-137 isotopes as the radiation source.

In the US, gamma ray detectors are beginning to be used as part of the Container Security Initiative (CSI). These US$5 million machines are advertised to scan 30 containers per hour. The objective of this technique is to screen merchant ship containers before they enter US ports.

Gamma radiation is often used to kill living organisms, in a process called irradiation. Applications of this include sterilizing medical equipment (as an alternative to autoclaves or chemical means), removing decay-causing bacteria from many foods or preventing fruit and vegetables from sprouting to maintain freshness and flavor.

Despite their cancer-causing properties, gamma rays are also used to treat some types of cancer, since the rays kill cancer cells also. In the procedure called gamma-knife surgery, multiple concentrated beams of gamma rays are directed on the growth in order to kill the cancerous cells. The beams are aimed from different angles to concentrate the radiation on the growth while minimizing damage to surrounding tissues.

Gamma rays are also used for diagnostic purposes in nuclear medicine in imaging techniques. A number of different gamma-emitting radioisotopes are used. For example, in a PET scan a radiolabled sugar called fludeoxyglucose emits positrons that are converted to pairs of gamma rays that localize cancer (which often takes up more sugar than other surrounding tissues). The most common gamma emitter used in medical applications is the nuclear isomer technetium-99m which emits gamma rays in the same energy range as diagnostic X-rays. When this radionuclide tracer is administered to a patient, a gamma camera can be used to form an image of the radioisotope's distribution by detecting the gamma radiation emitted (see also SPECT). Depending on what molecule has been labeled with the tracer, such techniques can be employed to diagnose a wide range of conditions (for example, the spread of cancer to the bones in a bone scan).

Read more about this topic:  Gamma Ray