Gambler's Fallacy - Explaining Why The Probability Is 1/2 For A Fair Coin

Explaining Why The Probability Is 1/2 For A Fair Coin

We can see from the above that, if one flips a fair coin 21 times, then the probability of 21 heads is 1 in 2,097,152. However, the probability of flipping a head after having already flipped 20 heads in a row is simply 1⁄2. This is an application of Bayes' theorem.

This can also be seen without knowing that 20 heads have occurred for certain (without applying of Bayes' theorem). Consider the following two probabilities, assuming a fair coin:

  • probability of 20 heads, then 1 tail = 0.520 × 0.5 = 0.521
  • probability of 20 heads, then 1 head = 0.520 × 0.5 = 0.521

The probability of getting 20 heads then 1 tail, and the probability of getting 20 heads then another head are both 1 in 2,097,152. Therefore, it is equally likely to flip 21 heads as it is to flip 20 heads and then 1 tail when flipping a fair coin 21 times. Furthermore, these two probabilities are equally as likely as any other 21-flip combinations that can be obtained (there are 2,097,152 total); all 21-flip combinations will have probabilities equal to 0.521, or 1 in 2,097,152. From these observations, there is no reason to assume at any point that a change of luck is warranted based on prior trials (flips), because every outcome observed will always have been as likely as the other outcomes that were not observed for that particular trial, given a fair coin. Therefore, just as Bayes' theorem shows, the result of each trial comes down to the base probability of the fair coin: 1⁄2.

Read more about this topic:  Gambler's Fallacy

Famous quotes containing the words explaining, probability, fair and/or coin:

    If you’re lucky, you have money. That’s why it’s better to be born lucky than rich. If you’re rich, you can always lose your money, but if you’re lucky, you’ll always get more money.
    —Anthony Pélissier. Explaining her philosophy of life to her son (1949)

    The probability of learning something unusual from a newspaper is far greater than that of experiencing it; in other words, it is in the realm of the abstract that the more important things happen in these times, and it is the unimportant that happens in real life.
    Robert Musil (1880–1942)

    Indeed, I believe that in the future, when we shall have seized again, as we will seize if we are true to ourselves, our own fair part of commerce upon the sea, and when we shall have again our appropriate share of South American trade, that these railroads from St. Louis, touching deep harbors on the gulf, and communicating there with lines of steamships, shall touch the ports of South America and bring their tribute to you.
    Benjamin Harrison (1833–1901)

    The moral equalizes all; enriches, empowers all. It is the coin which buys all, and which all find in their pocket. Under the whip of the driver, the slave shall feel his equality with saints and heroes.
    Ralph Waldo Emerson (1803–1882)