Galois Representations in Number Theory
Many objects that arise in number theory are naturally Galois representations. For example, if L is a Galois extension of a number field K, the ring of integers OL of L is a Galois module over OK for the Galois group of L/K (see Hilbert–Speiser theorem). If K is a local field, the multiplicative group of its separable closure is a module for the absolute Galois group of K and its study leads to local class field theory. For global class field theory, the union of the idele class groups of all finite separable extensions of K is used instead.
There are also Galois representations that arise from auxiliary objects and can be used to study Galois groups. An important family of examples are the â„“-adic Tate modules of abelian varieties.
Read more about this topic: Galois Module
Famous quotes containing the words number and/or theory:
“My tendency to nervousness in my younger days, in view of the fact of a number of near relatives on both my fathers and mothers side of the house having become insane, gave some serious uneasiness. I made up my mind to overcome it.... In the cross-examination of witnesses before a crowded court-house ... I soon found I could control myself even in the worst of testing cases. Finally, in battle.”
—Rutherford Birchard Hayes (18221893)
“The theory of truth is a series of truisms.”
—J.L. (John Langshaw)