Logical Interpretation of Fuzzy Control
In spite of the appearance there are several difficulties to give a rigorous logical interpretation of the IF-THEN rules. As an example, interpret a rule as IF (temperature is "cold") THEN (heater is "high") by the first order formula Cold(x)→High(y) and assume that r is an input such that Cold(r) is false. Then the formula Cold(r)→High(t) is true for any t and therefore any t gives a correct control given r. A rigorous logical justification of fuzzy control is given in Hájek's book (see Chapter 7) where fuzzy control is represented as a theory of Hájek's basic logic. Also in Gerla 2005 a logical approach to fuzzy control is proposed based on fuzzy logic programming. Indeed, denote by f the fuzzy function arising of a IF-THEN systems of rules. Then we can translate this system into fuzzy program in such a way that f is the interpretation of a vague predicate Good(x,y) in the least fuzzy Herbrand model of this program. This gives further useful tools to fuzzy control.
Read more about this topic: Fuzzy Control System
Famous quotes containing the words logical, fuzzy and/or control:
“I see mysteries and complications wherever I look, and I have never met a steadily logical person.”
—Martha Gellhorn (b. 1908)
“Even their song is not a sure thing.
It is not a language;
it is a kind of breathing.
They are two asthmatics
whose breath sobs in and out
through a small fuzzy pipe.”
—Anne Sexton (19281974)
“... the black girls didnt get these pills because their black ministers were up on the pulpit saying that birth control pills were black genocide. What Im saying is that black men have exploited black women.... They didnt want them to have any choice about their reproductive health. And if you cant control your reproduction, you cant control your life.”
—Joycelyn Elders (b. 1933)