Fundamental Theorem On Homomorphisms - Group Theoretic Version

Group Theoretic Version

Given two groups G and H and a group homomorphism f : GH, let K be a normal subgroup in G and φ the natural surjective homomorphism GG/K (where G/K is a quotient group). If K is a subset of ker(f) then there exists a unique homomorphism h:G/KH such that f = h φ.

The situation is described by the following commutative diagram:

By setting K = ker(f) we immediately get the first isomorphism theorem.

Read more about this topic:  Fundamental Theorem On Homomorphisms

Famous quotes containing the words group and/or version:

    It’s important to remember that feminism is no longer a group of organizations or leaders. It’s the expectations that parents have for their daughters, and their sons, too. It’s the way we talk about and treat one another. It’s who makes the money and who makes the compromises and who makes the dinner. It’s a state of mind. It’s the way we live now.
    Anna Quindlen (20th century)

    I should think that an ordinary copy of the King James version would have been good enough for those Congressmen.
    Calvin Coolidge (1872–1933)