Fundamental Lemma of Calculus of Variations

Fundamental Lemma Of Calculus Of Variations

In mathematics, specifically in the calculus of variations, the fundamental lemma of the calculus of variations states that if the definite integral of the product of a continuous function f(x) and h(x) is zero, for all continuous functions h(x) that vanish at the endpoints of the range of integration and have their first two derivatives continuous, then f(x)=0. This lemma is used in deriving the Euler–Lagrange equation of the calculus of variations. It is a lemma that is typically used to transform a problem from its weak formulation (variational form) into its strong formulation (differential equation).

Read more about Fundamental Lemma Of Calculus Of Variations:  Statement, Proof, The Du Bois-Reymond Lemma, Applications

Famous quotes containing the words fundamental, calculus and/or variations:

    This is the fundamental idea of culture, insofar as it sets but one task for each of us: to further the production of the philosopher, of the artist, and of the saint within us and outside us, and thereby to work at the consummation of nature.
    Friedrich Nietzsche (1844–1900)

    I try to make a rough music, a dance of the mind, a calculus of the emotions, a driving beat of praise out of the pain and mystery that surround me and become me. My poems are meant to make your mind get up and shout.
    Judith Johnson Sherwin (b. 1936)

    I may be able to spot arrowheads on the desert but a refrigerator is a jungle in which I am easily lost. My wife, however, will unerringly point out that the cheese or the leftover roast is hiding right in front of my eyes. Hundreds of such experiences convince me that men and women often inhabit quite different visual worlds. These are differences which cannot be attributed to variations in visual acuity. Man and women simply have learned to use their eyes in very different ways.
    Edward T. Hall (b. 1914)