Fuglede's Theorem - Putnam's Generalization

Putnam's Generalization

The following contains Fuglede's result as a special case. The proof by Rosenblum pictured below is just that presented by Fuglede for his theorem when assuming N=M.

Theorem (Calvin Richard Putnam) Let T, M, N be linear operators on a complex Hilbert space, and suppose that M and N are normal and MT = TN. Then M*T = TN*.

First proof (Marvin Rosenblum): By induction, the hypothesis implies that MkT = TNk for all k. Thus for any λ in ,

Consider the function

This is equal to

,

where and . However we have

so U is unitary, and hence has norm 1 for all λ; the same is true for V(λ), so

So F is a bounded analytic vector-valued function, and is thus constant, and equal to F(0) = T. Considering the first-order terms in the expansion for small λ, we must have M*T = TN*.

The original paper of Fuglede appeared in 1950; it was extended to the form given above by Putnam in 1951. The short proof given above was first published by Rosenblum in 1958; it is very elegant, but is less general than the original proof which also considered the case of unbounded operators. Another simple proof of Putnam's theorem is as follows:

Second proof: Consider the matrices

T' =
\begin{bmatrix}
0 & 0\\ T & 0
\end{bmatrix}
\quad \mbox{and} \quad
N' =
\begin{bmatrix}
N & 0 \\ 0 & M
\end{bmatrix}.

The operator N' is normal and, by assumption, T' N' = N' T' . By Fuglede's theorem, one has

Comparing entries then gives the desired result.

From Putnam's generalization, one can deduce the following:

Corollary If two normal operators M and N are similar, then they are unitarily equivalent.

Proof: Suppose MS = SN where S is a bounded invertible operator. Putnam's result implies M*S = SN*, i.e.

Take the adjoint of the above equation and we have

So

Therefore, on Ran(M), SS* is the identity operator. SS* can be extended to Ran(M)⊥ = Ker(M). Therefore, by normality of M, SS* = I, the identity operator. Similarly, S*S = I. This shows that S is unitary.

Corollary If M and N are normal operators, and MN = NM, then MN is also normal.

Proof: The argument invokes only Fuglede's theoerm. One can directly compute

By Fuglede, the above becomes

But M and N are normal, so

Read more about this topic:  Fuglede's Theorem

Famous quotes containing the word putnam:

    Even American women are not felt to be persons in the same sense as the male immigrants among the Hungarians, Poles, Russian Jews,—not to speak of Italians, Germans, and the masters of all of us—the Irish!
    —Mary Putnam Jacobi (1842–1906)