Limit Sets
Because of the discrete action, the orbit Γz of a point z in the upper half-plane under the action of Γ has no accumulation points in the upper half-plane. There may, however, be limit points on the real axis. Let Λ(Γ) be the limit set of Γ, that is, the set of limit points of Γz for z ∈ H. Then Λ(Γ) ⊆ R ∪ ∞. The limit set may be empty, or may contain one or two points, or may contain an infinite number. In the latter case, there are two types:
A Fuchsian group of the first type is a group for which the limit set is the closed real line R ∪ ∞. This happens if the quotient space H/Γ has finite volume, but there are Fuchsian groups of the first kind of infinite covolume.
Otherwise, a Fuchsian group is said to be of the second type. Equivalently, this is a group for which the limit set is a perfect set that is nowhere dense on . Since it is nowhere dense, this implies that any limit point is arbitrarily close to an open set that is not in the limit set. In other words, the limit set is a Cantor set.
The type of a Fuchsian group need not be the same as its type when considered as a Kleinian group: in fact, all Fuchsian groups are Kleinian groups of type 2, as their limit sets (as Kleinian groups) are proper subsets of the Riemann sphere, contained in some circle.
Read more about this topic: Fuchsian Group
Famous quotes containing the words limit and/or sets:
“Now for civil service reform. Legislation must be prepared and executive rules and maxims. We must limit and narrow the area of patronage. We must diminish the evils of office-seeking. We must stop interference of federal officers with elections. We must be relieved of congressional dictation as to appointments.”
—Rutherford Birchard Hayes (18221893)
“Eddie did not die. He is no longer on Channel 4, and our sets are tuned to Channel 4; hes on Channel 7, but hes still broadcasting. Physical incarnation is highly overrated; it is one corner of universal possibility.”
—Marianne Williamson (b. 1953)