Explanation
The Frobenius method tells us that we can seek a power series solution of the form
Differentiating:
Substituting:
The expression
is known as the indicial polynomial, which is quadratic in r. The general definition of the indicial polynomial is the coefficient of the lowest power of z in the infinite series. In this case it happens to be that this is the rth coefficient but, it is possible for the lowest possible exponent to be r − 2, r − 1 or, something else depending on the given differential equation. This detail is important to keep in mind because one can end up with complicated expressions in the process of synchronizing all the series of the differential equation to start at the same index value which in the above expression is k = 1. However, in solving for the indicial roots attention is focused only on the coefficient of the lowest power of z.
Using this, the general expression of the coefficient of zk + r is
These coefficients must be zero, since they should be solutions of the differential equation, so
The series solution with Ak above,
satisfies
If we choose one of the roots to the indicial polynomial for r in Ur(z), we gain a solution to the differential equation. If the difference between the roots is not an integer, we get another, linearly independent solution in the other root.
Read more about this topic: Frobenius Method
Famous quotes containing the word explanation:
“What causes adolescents to rebel is not the assertion of authority but the arbitrary use of power, with little explanation of the rules and no involvement in decision-making. . . . Involving the adolescent in decisions doesnt mean that you are giving up your authority. It means acknowledging that the teenager is growing up and has the right to participate in decisions that affect his or her life.”
—Laurence Steinberg (20th century)
“Herein is the explanation of the analogies, which exist in all the arts. They are the re-appearance of one mind, working in many materials to many temporary ends. Raphael paints wisdom, Handel sings it, Phidias carves it, Shakspeare writes it, Wren builds it, Columbus sails it, Luther preaches it, Washington arms it, Watt mechanizes it. Painting was called silent poetry, and poetry speaking painting. The laws of each art are convertible into the laws of every other.”
—Ralph Waldo Emerson (18031882)
“Are cans constitutionally iffy? Whenever, that is, we say that we can do something, or could do something, or could have done something, is there an if in the offingsuppressed, it may be, but due nevertheless to appear when we set out our sentence in full or when we give an explanation of its meaning?”
—J.L. (John Langshaw)