Friedrichs Extension - Definition of Friedrichs Extension

Definition of Friedrichs Extension

The definition of the Friedrichs extension is based on the theory of closed positive forms on Hilbert spaces. If T is non-negative, then

is a sesquilinear form on dom T and

Thus Q defines an inner product on dom T. Let H1 be the completion of dom T with respect to Q. H1 is an abstractly defined space; for instance its elements can be represented as equivalence classes of Cauchy sequences of elements of dom T. It is not obvious that all elements in H1 can identified with elements of H. However, the following can be proved:

The canonical inclusion

extends to an injective continuous map H1H. We regard H1 as a subspace of H.

Define an operator A by

In the above formula, bounded is relative to the topology on H1 inherited from H. By the Riesz representation theorem applied to the linear functional φξ extended to H, there is a unique A ξ ∈ H such that

Theorem. A is a non-negative self-adjoint operator such that T1=A - I extends T.

T1 is the Friedrichs extension of T.

Read more about this topic:  Friedrichs Extension

Famous quotes containing the words definition of, definition and/or extension:

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)

    A dense undergrowth of extension cords sustains my upper world of lights, music, and machines of comfort.
    Mason Cooley (b. 1927)