Definition
The basic Fredkin gate is a controlled swap gate that maps three inputs (C, I1, I2) onto three outputs (C, O1, O2). The C input is mapped directly to the C output. If C = 0, no swap is performed; I1 maps to O1, and I2 maps to O2. Otherwise, the two outputs are swapped so that I1 maps to O2, and I2 maps to O1. It is easy to see that this circuit is reversible, i.e., "undoes itself" when run backwards. A generalized n×n Fredkin gate passes its first n-2 inputs unchanged to the corresponding outputs, and swaps its last two outputs if and only if the first n-2 inputs are all 1.
The Fredkin gate is the reversible three-bit gate that swaps the last two bits if the first bit is 1.
Truth table | Matrix form | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
It has the useful property that the numbers of 0s and 1s are conserved throughout, which in the billiard ball model means the same number of balls are output as input. This corresponds nicely to the conservation of mass in physics, and helps to show that the model is not wasteful.
Read more about this topic: Fredkin Gate
Famous quotes containing the word definition:
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)