Properties
The set of Fredholm operators from X to Y is open in the Banach space L(X, Y) of bounded linear operators, equipped with the operator norm. More precisely, when T0 is Fredholm from X to Y, there exists ε > 0 such that every T in L(X, Y) with ||T − T0|| < ε is Fredholm, with the same index as that of T0.
When T is Fredholm from X to Y and U Fredholm from Y to Z, then the composition is Fredholm from X to Z and
When T is Fredholm, the transpose (or adjoint) operator T ′ is Fredholm from Y ′ to X ′, and ind(T ′) = −ind(T). When X and Y are Hilbert spaces, the same conclusion holds for the Hermitian adjoint T∗.
When T is Fredholm and K a compact operator, then T + K is Fredholm. The index of T remains constant under compact perturbations of T. This follows from the fact that the index i(s) of T + s K is an integer defined for every s in, and i(s) is locally constant, hence i(1) = i(0).
Invariance by perturbation is true for larger classes than the class of compact operators. For example, when T is Fredholm and S a strictly singular operator, then T + S is Fredholm with the same index. A bounded linear operator S from X to Y is strictly singular when its restriction to any infinite dimensional subspace X0 of X fails to be an into isomorphism, that is:
Read more about this topic: Fredholm Operator
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)