Relation To Bases
If the set is a frame of V, it spans V. Otherwise there would exist at least one non-zero which would be orthogonal to all . If we insert into the frame condition, we obtain
therefore, which is a violation of the initial assumptions on the lower frame bound.
If a set of vectors spans V, this is not a sufficient condition for calling the set a frame. As an example, consider and the infinite set given by
This set spans V but since we cannot choose . Consequently, the set is not a frame.
Read more about this topic: Frame Of A Vector Space
Famous quotes containing the words relation to, relation and/or bases:
“Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.”
—HonorĂ© De Balzac (17991850)
“To criticize is to appreciate, to appropriate, to take intellectual possession, to establish in fine a relation with the criticized thing and to make it ones own.”
—Henry James (18431916)
“In the beginning was the word, the word
That from the solid bases of the light
Abstracted all the letters of the void....”
—Dylan Thomas (19141953)