Statement
If x1, x2 and y1, y2 are two pairs of complex numbers, with each pair being linearly independent over the rational numbers, then at least one of the following four numbers is transcendental:
An alternative way of stating the conjecture in terms of logarithms is the following. For 1 ≤ i,j ≤ 2 let λij be complex numbers such that exp(λij) are all algebraic. Suppose λ11 and λ12 are linearly independent over the rational numbers, and λ11 and λ21 are also linearly independent over the rational numbers, then
An equivalent formulation in terms of linear algebra is the following. Let M be the 2×2 matrix
where exp(λij) is algebraic for 1 ≤ i,j ≤ 2. Suppose the two rows of M are linearly independent over the rational numbers, and the two columns of M are linearly independent over the rational numbers. Then the rank of M is 2.
While a 2×2 matrix having linearly independent rows and columns usually means it has rank 2, in this case we require linear independence over a smaller field so the rank isn't forced to be 2. For example, the matrix
has rows and columns that are linearly independent over the rational numbers, since π is irrational. But the rank of the matrix is 1. So in this case the conjecture would imply that at least one of e, eπ, and eπ ² is transcendental (which in this case is already known since e is transcendental).
Read more about this topic: Four Exponentials Conjecture
Famous quotes containing the word statement:
“I think, therefore I am is the statement of an intellectual who underrates toothaches.”
—Milan Kundera (b. 1929)
“The new statement will comprise the skepticisms, as well as the faiths of society, and out of unbeliefs a creed shall be formed. For, skepticisms are not gratuitous or lawless, but are limitations of the affirmative statement, and the new philosophy must take them in, and make affirmations outside of them, just as much as must include the oldest beliefs.”
—Ralph Waldo Emerson (18031882)
“He has the common feeling of his profession. He enjoys a statement twice as much if it appears in fine print, and anything that turns up in a footnote ... takes on the character of divine revelation.”
—Margaret Halsey (b. 1910)