Mathematical Characteristics of Periodicity Blocks
The periodicity blocks form a secondary, oblique lattice, superimposed on the first one. This lattice may be given by a function φ:
which is really a linear combination:
where point (x0, y0) can be any point, preferably not a node of the primary lattice, and preferably so that points φ(0,1), φ(1,0) and φ(1,1) are not any nodes either.
Then membership of primary nodes within periodicity blocks may be tested analytically through the inverse φ function:
Let
then let the pitch B(x,y) belong to the scale MB iff i.e.
For the one-dimensional case:
where L is the length of the unison vector,
For the three-dimensional case,
where is the determinant of the matrix of unison vectors.
Read more about this topic: Fokker Periodicity Blocks
Famous quotes containing the words mathematical and/or blocks:
“As we speak of poetical beauty, so ought we to speak of mathematical beauty and medical beauty. But we do not do so; and that reason is that we know well what is the object of mathematics, and that it consists in proofs, and what is the object of medicine, and that it consists in healing. But we do not know in what grace consists, which is the object of poetry.”
—Blaise Pascal (16231662)
“Good blocks of oak it was I split,
As large around as the chopping block;
And every piece I squarely hit
Fell splinterless as a cloven rock.”
—Robert Frost (18741963)