Floquet theory is a branch of the theory of ordinary differential equations relating to the class of solutions to linear differential equations of the form
with a piecewise continuous periodic function with period .
The main theorem of Floquet theory, Floquet's theorem, due to Gaston Floquet (1883), gives a canonical form for each fundamental matrix solution of this common linear system. It gives a coordinate change with that transforms the periodic system to a traditional linear system with constant, real coefficients.
In solid-state physics, the analogous result (generalized to three dimensions) is known as Bloch's theorem.
Note that the solutions of the linear differential equation form a vector space. A matrix is called a fundamental matrix solution if all columns are linearly independent solutions. A matrix is called a principal fundamental matrix solution if all columns are linearly independent solutions and there exists such that is the identity. A principal fundamental matrix can be constructed from a fundamental matrix using . The solution of the linear differential equation with the initial condition is where is any fundamental matrix solution.
Read more about Floquet Theory: Floquet's Theorem, Consequences and Applications, Floquet's Theorem Applied To Mathieu Equation
Famous quotes containing the word theory:
“A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of govt as beyond its control, of itself as wholly controlled by govt. Somewhere in between and in gradations is the group that has the sense that govt exists for it, and shapes its consciousness accordingly.”
—Lionel Trilling (19051975)