Floer Homology - Symplectic Field Theory (SFT)

Symplectic Field Theory (SFT)

This is an invariant of contact manifolds and symplectic cobordisms between them, originally due to Yakov Eliashberg, Alexander Givental and Helmut Hofer. The symplectic field theory as well as its subcomplexes, rational symplectic field theory and contact homology, are defined as homologies of differential algebras, which are generated by closed orbits of the Reeb vector field of a chosen contact form. The differential counts certain holomorphic curves in the cylinder over the contact manifold, where the trivial examples are the branched coverings of (trivial) cylinders over closed Reeb orbits. It further includes a linear homology theory, called cylindrical or linearized contact homology (sometimes, by abuse of notation, just contact homology), whose chain groups are vector spaces generated by closed orbits and whose differentials count only holomorphic cylinders. However, cylindrical contact homology is not always defined due to the presence of holomorphic discs. In situations where cylindrical contact homology makes sense, it may be seen as the (slightly modified) "Morse homology" of the action functional on the free loop space which sends a loop to the integral of the contact form alpha over the loop. Reeb orbits are the critical points of this functional.

SFT also associates a relative invariant of a Legendrian submanifold of a contact manifold known as relative contact homology. Its generators are Reeb chords, which are trajectories of the Reeb vector field beginning and ending on a Lagrangian, and its differential counts certain holomorphic strips in the symplectization of the contact manifold whose ends are asymptotic to given Reeb chords.

In SFT the contact manifolds can be replaced by mapping tori of symplectic manifolds with symplectomorphisms. While the cylindrical contact homology is well-defined and given by the symplectic Floer homologies of powers of the symplectomorphism, (rational) symplectic field theory and contact homology can be considered as generalized symplectic Floer homologies. In the important case when the symplectomorphism is the time-one map of a time-dependent Hamiltonian, it was however shown that these higher invariants do not contain any further information.

Read more about this topic:  Floer Homology

Famous quotes containing the words field and/or theory:

    Never in the field of human conflict was so much owed by so many to so few.
    Winston Churchill (1874–1965)

    Hygiene is the corruption of medicine by morality. It is impossible to find a hygienest who does not debase his theory of the healthful with a theory of the virtuous.... The true aim of medicine is not to make men virtuous; it is to safeguard and rescue them from the consequences of their vices.
    —H.L. (Henry Lewis)