Flat Module - in Constructive Mathematics

In Constructive Mathematics

Flat modules have increased importance in constructive mathematics, where projective modules are less useful. For example, that all free modules are projective is equivalent to the full axiom of choice, so theorems about projective modules, even if proved constructively, do not necessarily apply to free modules. In contrast, no choice is needed to prove that free modules are flat, so theorems about flat modules can still apply.

Read more about this topic:  Flat Module

Famous quotes containing the words constructive and/or mathematics:

    Friendship among nations, as among individuals, calls for constructive efforts to muster the forces of humanity in order that an atmosphere of close understanding and cooperation may be cultivated.
    Franklin D. Roosevelt (1882–1945)

    The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of mathematics under the new names logicism, intuitionism, and formalism.
    Willard Van Orman Quine (b. 1908)