Flat Module - in Constructive Mathematics

In Constructive Mathematics

Flat modules have increased importance in constructive mathematics, where projective modules are less useful. For example, that all free modules are projective is equivalent to the full axiom of choice, so theorems about projective modules, even if proved constructively, do not necessarily apply to free modules. In contrast, no choice is needed to prove that free modules are flat, so theorems about flat modules can still apply.

Read more about this topic:  Flat Module

Famous quotes containing the words constructive and/or mathematics:

    The desert is a natural extension of the inner silence of the body. If humanity’s language, technology, and buildings are an extension of its constructive faculties, the desert alone is an extension of its capacity for absence, the ideal schema of humanity’s disappearance.
    Jean Baudrillard (b. 1929)

    ... though mathematics may teach a man how to build a bridge, it is what the Scotch Universities call the humanities, that teach him to be civil and sweet-tempered.
    Amelia E. Barr (1831–1919)