Flat Module - in Constructive Mathematics

In Constructive Mathematics

Flat modules have increased importance in constructive mathematics, where projective modules are less useful. For example, that all free modules are projective is equivalent to the full axiom of choice, so theorems about projective modules, even if proved constructively, do not necessarily apply to free modules. In contrast, no choice is needed to prove that free modules are flat, so theorems about flat modules can still apply.

Read more about this topic:  Flat Module

Famous quotes containing the words constructive and/or mathematics:

    Work is a responsibility most adults assume, a burden at times, a complication, but also a challenge that, like children, requires enormous energy and that holds the potential for qualitative, as well as quantitative, rewards. Isn’t this the only constructive perspective for women who have no choice but to work? And isn’t it a more healthy attitude for women writhing with guilt because they choose to compound the challenges of motherhood with work they enjoy?
    Melinda M. Marshall (20th century)

    Why does man freeze to death trying to reach the North Pole? Why does man drive himself to suffer the steam and heat of the Amazon? Why does he stagger his mind with the mathematics of the sky? Once the question mark has arisen in the human brain the answer must be found, if it takes a hundred years. A thousand years.
    Walter Reisch (1903–1963)