Flame Ionization Detector - Operating Principles

Operating Principles

The design of the flame ionization detector varies from manufacturer to manufacturer, but the principles are the same. Most commonly, the FID is attached to a gas chromatography system.

The eluent exits the GC column (A) and enters the FID detector’s oven (B). The oven is needed to make sure that as soon as the eluent exits the column, it does not come out of the gaseous phase and deposit on the interface between the column and FID. This deposition would result in loss of eluent and errors in detection. As the eluent travels up the FID, it is first mixed with the hydrogen fuel (C) and then with the oxidant (D). The eluent/fuel/oxidant mixture continues to travel up to the nozzle head where a positive bias voltage exists (E). This positive bias helps to repel the reduced carbon ions created by the flame (F) pyrolyzing the eluent. The ions are repelled up toward the collector plates (G) which are connected to a very sensitive ammeter, which detects the ions hitting the plates, then feeds that signal (H) to an amplifier, integrator, and display system. The products of the flame are finally vented out of the detector through the exhaust port (J).

Read more about this topic:  Flame Ionization Detector

Famous quotes containing the words operating and/or principles:

    Go on then in doing with your pen what in other times was done with the sword; shew that reformation is more practicable by operating on the mind than on the body of man.
    Thomas Jefferson (1743–1826)

    I have ever deemed it fundamental for the United States never to take active part in the quarrels of Europe. Their political interests are entirely distinct from ours. Their mutual jealousies, their balance of power, their complicated alliances, their forms and principles of government, are all foreign to us. They are nations of eternal war.
    Thomas Jefferson (1743–1826)