Fitting Subgroup - The Fitting Subgroup

The Fitting Subgroup

The nilpotency of the Fitting subgroup of a finite group is guaranteed by Fitting's theorem which says that the product of a finite collection of normal nilpotent subgroups of G is again a normal nilpotent subgroup. It may also be explicitly constructed as the product of the p-cores of G over all of the primes p dividing the order of G.

If G is a finite non-trivial solvable group then the Fitting subgroup is always non-trivial, i.e. if G≠1 is finite solvable, then F(G)≠1. Similarly the Fitting subgroup of G/F(G) will be nontrivial if G is not itself nilpotent, giving rise to the concept of Fitting length. Since the Fitting subgroup of a finite solvable group contains its own centralizer, this gives a method of understanding finite solvable groups as extensions of nilpotent groups by faithful automorphism groups of nilpotent groups.

In a nilpotent group, every chief factor is centralized by every element. Relaxing the condition somewhat, and taking the subgroup of elements of a general finite group which centralize every chief factor, one simply gets the Fitting subgroup again (Huppert 1967, Kap.VI, Satz 5.4, p.686):

The generalization to p-nilpotent groups is similar.

Read more about this topic:  Fitting Subgroup

Famous quotes containing the word fitting:

    Children’s view of the world and their capacity to understand keep expanding as they mature, and they need to ask the same questions over and over, fitting the information into their new level of understanding.
    Joanna Cole (20th century)