Fitting Subgroup - The Fitting Subgroup

The Fitting Subgroup

The nilpotency of the Fitting subgroup of a finite group is guaranteed by Fitting's theorem which says that the product of a finite collection of normal nilpotent subgroups of G is again a normal nilpotent subgroup. It may also be explicitly constructed as the product of the p-cores of G over all of the primes p dividing the order of G.

If G is a finite non-trivial solvable group then the Fitting subgroup is always non-trivial, i.e. if G≠1 is finite solvable, then F(G)≠1. Similarly the Fitting subgroup of G/F(G) will be nontrivial if G is not itself nilpotent, giving rise to the concept of Fitting length. Since the Fitting subgroup of a finite solvable group contains its own centralizer, this gives a method of understanding finite solvable groups as extensions of nilpotent groups by faithful automorphism groups of nilpotent groups.

In a nilpotent group, every chief factor is centralized by every element. Relaxing the condition somewhat, and taking the subgroup of elements of a general finite group which centralize every chief factor, one simply gets the Fitting subgroup again (Huppert 1967, Kap.VI, Satz 5.4, p.686):

The generalization to p-nilpotent groups is similar.

Read more about this topic:  Fitting Subgroup

Famous quotes containing the word fitting:

    We do not quite say that the new is more valuable because it fits in; but its fitting in is a test of its value—a test, it is true, which can only be slowly and cautiously applied, for we are none of us infallible judges of conformity.
    —T.S. (Thomas Stearns)