First-order Partial Differential Equation

In mathematics, a first-order partial differential equation is a partial differential equation that involves only first derivatives of the unknown function of n variables. The equation takes the form

Such equations arise in the construction of characteristic surfaces for hyperbolic partial differential equations, in the calculus of variations, in some geometrical problems, and they arise in simple models for gas dynamics whose solution involves the method of characteristics. If a family of solutions of a single first-order partial differential equation can be found, then additional solutions may be obtained by forming envelopes of solutions in that family. In a related procedure, general solutions may be obtained by integrating families of ordinary differential equations.

Read more about First-order Partial Differential Equation:  Characteristic Surfaces For The Wave Equation, Two-dimensional Theory

Famous quotes containing the words partial, differential and/or equation:

    And meanwhile we have gone on living,
    Living and partly living,
    Picking together the pieces,
    Gathering faggots at nightfall,
    Building a partial shelter,
    For sleeping and eating and drinking and laughter.
    —T.S. (Thomas Stearns)

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.
    Norman Mailer (b. 1923)