Finsler Manifold

A Finsler manifold is a differentiable manifold M together with a Finsler function F defined on the tangent bundle of M so that for all tangent vectors v,

  • F is smooth on the complement of the zero section of TM.
  • F(v) ≥ 0 with equality if and only if v = 0 (positive definiteness).
  • Fv) = λF(v) for all λ ≥ 0 (but not necessarily for λ<0) (homogeneity).
  • F(v+w) ≤ F(v)+F(w) for all w at the same tangent space with v (subadditivity).

In other words, F is an asymmetric norm on each tangent space. Typically one replaces the subadditivity with the following strong convexity condition:

  • For each tangent vector v, the hessian of F2 at v is positive definite.

Here the hessian of F2 at v is the symmetric bilinear form

also known as the fundamental tensor of F at v. Strong convexity of F2 implies the subadditivity with a strict inequality if u/F(u) ≠ v/F(v). If F2 is strongly convex, then F is a Minkowski norm on each tangent space.

A Finsler metric is reversible if, in addition,

  • F(−v) = F(v) for all tangent vectors v.

A reversible Finsler metric defines a norm (in the usual sense) on each tangent space.

Read more about Finsler Manifold:  Examples, Geodesics

Famous quotes containing the word manifold:

    As one who knows many things, the humanist loves the world precisely because of its manifold nature and the opposing forces in it do not frighten him. Nothing is further from him than the desire to resolve such conflicts ... and this is precisely the mark of the humanist spirit: not to evaluate contrasts as hostility but to seek human unity, that superior unity, for all that appears irreconcilable.
    Stefan Zweig (18811942)