Finsler Manifold

A Finsler manifold is a differentiable manifold M together with a Finsler function F defined on the tangent bundle of M so that for all tangent vectors v,

  • F is smooth on the complement of the zero section of TM.
  • F(v) ≥ 0 with equality if and only if v = 0 (positive definiteness).
  • Fv) = λF(v) for all λ ≥ 0 (but not necessarily for λ<0) (homogeneity).
  • F(v+w) ≤ F(v)+F(w) for all w at the same tangent space with v (subadditivity).

In other words, F is an asymmetric norm on each tangent space. Typically one replaces the subadditivity with the following strong convexity condition:

  • For each tangent vector v, the hessian of F2 at v is positive definite.

Here the hessian of F2 at v is the symmetric bilinear form

also known as the fundamental tensor of F at v. Strong convexity of F2 implies the subadditivity with a strict inequality if u/F(u) ≠ v/F(v). If F2 is strongly convex, then F is a Minkowski norm on each tangent space.

A Finsler metric is reversible if, in addition,

  • F(−v) = F(v) for all tangent vectors v.

A reversible Finsler metric defines a norm (in the usual sense) on each tangent space.

Read more about Finsler Manifold:  Examples, Geodesics

Famous quotes containing the word manifold:

    There is then creative reading as well as creative writing. When the mind is braced by labor and invention, the page of whatever book we read becomes luminous with manifold allusion. Every sentence is doubly significant, and the sense of our author is as broad as the world.
    Ralph Waldo Emerson (1803–1882)