The stretch ratio is a measure of the extensional or normal strain of a differential line element, which can be defined at either the undeformed configuration or the deformed configuration.
The stretch ratio for the differential element (Figure) in the direction of the unit vector at the material point, in the undeformed configuration, is defined as
where is the deformed magnitude of the differential element .
Similarly, the stretch ratio for the differential element (Figure), in the direction of the unit vector at the material point, in the deformed configuration, is defined as
The normal strain in any direction can be expressed as a function of the stretch ratio,
This equation implies that the normal strain is zero, i.e. no deformation, when the stretch is equal to unity. Some materials, such as elastometers can sustain stretch ratios of 3 or 4 before they fail, whereas traditional engineering materials, such as concrete or steel, fail at much lower stretch ratios, perhaps of the order of 1.001 (reference?)
Read more about this topic: Finite Strain Theory
Famous quotes containing the words stretch and/or ratio:
“Every generation rewrites the past. In easy times history is more or less of an ornamental art, but in times of danger we are driven to the written record by a pressing need to find answers to the riddles of today.... In times of change and danger when there is a quicksand of fear under mens reasoning, a sense of continuity with generations gone before can stretch like a lifeline across the scary present and get us past that idiot delusion of the exceptional Now that blocks good thinking.”
—John Dos Passos (18961970)
“Official dignity tends to increase in inverse ratio to the importance of the country in which the office is held.”
—Aldous Huxley (18941963)