Finite Field
The theory of finite fields is perhaps the most important aspect of finite ring theory due to its intimate connections with algebraic geometry, Galois theory and number theory. An important, but fairly old aspect of the theory is the classification of finite fields (Jacobson 1985, p. 287):
- The order or number of elements of a finite field equals pn, where p is a prime number called the characteristic of the field, and n is a positive integer.
- For every prime number p and positive integer n, there exists a finite field with pn elements.
- Any two finite fields with the same order are isomorphic.
Despite the classification, finite fields are still an active area of research, including recent results on the Kakeya conjecture and open problems regarding the size of smallest primitive roots (in number theory).
Read more about this topic: Finite Rings
Famous quotes containing the words finite and/or field:
“Put shortly, these are the two views, then. One, that man is intrinsically good, spoilt by circumstance; and the other that he is intrinsically limited, but disciplined by order and tradition to something fairly decent. To the one party mans nature is like a well, to the other like a bucket. The view which regards him like a well, a reservoir full of possibilities, I call the romantic; the one which regards him as a very finite and fixed creature, I call the classical.”
—Thomas Ernest Hulme (18831917)
“When it had long since outgrown his purely medical implications and become a world movement which penetrated into every field of science and every domain of the intellect: literature, the history of art, religion and prehistory; mythology, folklore, pedagogy, and what not.”
—Thomas Mann (18751955)