Finite Element Methods - History

History

While it is difficult to quote a date of the invention of the finite element method, the method originated from the need to solve complex elasticity and structural analysis problems in civil and aeronautical engineering. Its development can be traced back to the work by A. Hrennikoff and R. Courant. Although the approaches used by these pioneers are different, they share one essential characteristic: mesh discretization of a continuous domain into a set of discrete sub-domains, usually called elements.

Hrennikoff's work discretizes the domain by using a lattice analogy, while Courant's approach divides the domain into finite triangular subregions to solve second order elliptic partial differential equations (PDEs) that arise from the problem of torsion of a cylinder. Courant's contribution was evolutionary, drawing on a large body of earlier results for PDEs developed by Rayleigh, Ritz, and Galerkin.

The finite element method obtained its real impetus in the 1960s and 70s by the developments of J.H. Argyris and co-workers at the University of Stuttgart, R.W. Clough and co-workers at UC Berkeley, and O.C. Zienkiewicz and co-workers at the University of Swansea. Further impetus was provided in these years by available open source finite element software programs. NASA sponsored the original version of NASTRAN, and UC Berkeley made the finite element program SAP IV widely available. A rigorous mathematical basis to the finite element method was provided in 1973 with the publication by Strang and Fix. The method has since been generalized for the numerical modeling of physical systems in a wide variety of engineering disciplines, e.g., electromagnetism, heat transfer, and fluid dynamics; see O.C. Zienkiewicz, R.L.Taylor, and J.Z. Zhu, and K.J. Bathe.

Read more about this topic:  Finite Element Methods

Famous quotes containing the word history:

    ... that there is no other way,
    That the history of creation proceeds according to
    Stringent laws, and that things
    Do get done in this way, but never the things
    We set out to accomplish and wanted so desperately
    To see come into being.
    John Ashbery (b. 1927)

    To a surprising extent the war-lords in shining armour, the apostles of the martial virtues, tend not to die fighting when the time comes. History is full of ignominious getaways by the great and famous.
    George Orwell (1903–1950)

    There is a constant in the average American imagination and taste, for which the past must be preserved and celebrated in full-scale authentic copy; a philosophy of immortality as duplication. It dominates the relation with the self, with the past, not infrequently with the present, always with History and, even, with the European tradition.
    Umberto Eco (b. 1932)