Relation With Derivatives
The derivative of a function f at a point x is defined by the limit
If h has a fixed (non-zero) value instead of approaching zero, then the right-hand side of the above equation would be written
Hence, the forward difference divided by h approximates the derivative when h is small. The error in this approximation can be derived from Taylor's theorem. Assuming that f is continuously differentiable, the error is
The same formula holds for the backward difference:
However, the central difference yields a more accurate approximation. Its error is proportional to square of the spacing (if f is twice continuously differentiable):
The main problem with the central difference method, however, is that oscillating functions can yield zero derivative. If for uneven, and for even, then if it is calculated with the central difference scheme. This is particularly troublesome if the domain of is discrete.
Read more about this topic: Finite Difference
Famous quotes containing the words relation with and/or relation:
“[Mans] life consists in a relation with all things: stone, earth, trees, flowers, water, insects, fishes, birds, creatures, sun, rainbow, children, women, other men. But his greatest and final relation is with the sun.”
—D.H. (David Herbert)
“Much poetry seems to be aware of its situation in time and of its relation to the metronome, the clock, and the calendar. ... The season or month is there to be felt; the day is there to be seized. Poems beginning When are much more numerous than those beginning Where of If. As the meter is running, the recurrent message tapped out by the passing of measured time is mortality.”
—William Harmon (b. 1938)