Fine Topology (potential Theory) - Definition

Definition

The fine topology on the Euclidean space is defined to be the coarsest topology making all subharmonic functions (equivalently all superharmonic functions) continuous. Concepts in the fine topology are normally prefixed with the word 'fine' to distinguish them from the corresponding concepts in the usual topology, as for example 'fine neighbourhood' or 'fine continuous'.

Read more about this topic:  Fine Topology (potential Theory)

Famous quotes containing the word definition:

    The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.
    Samuel Taylor Coleridge (1772–1834)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)