Relation To Diameter and Systole
The exact value of the filling radius is known in very few cases. A general inequality relating the filling radius and the Riemannian diameter of X was proved in (Katz, 1983): the filling radius is at most a third of the diameter. In some cases, this yields the precise value of the filling radius. Thus, the filling radius of the Riemannian circle of length 2π, i.e. the unit circle with the induced Riemannian distance function, equals π/3, i.e. a sixth of its length. This follows by combing the diameter upper bound mentioned above with Gromov's lower bound in terms of the systole (Gromov, 1983). More generally, the filling radius of real projective space with a metric of constant curvature is a third of its Riemannian diameter, see (Katz, 1983). Equivalently, the filling radius is a sixth of the systole in these cases. The precise value is also known for the n-spheres (Katz, 1983).
The filling radius is linearly related to the systole of an essential manifold M. Namely, the systole of such an M is at most six times its filling radius, see (Gromov, 1983). The inequality is optimal in the sense that the boundary case of equality is attained by the real projective spaces as above.
Read more about this topic: Filling Radius
Famous quotes containing the words relation to and/or relation:
“It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.”
—René Descartes (15961650)
“In relation to God, we are like a thief who has burgled the house of a kindly householder and been allowed to keep some of the gold. From the point of view of the lawful owner this gold is a gift; From the point of view of the burglar it is a theft. He must go and give it back. It is the same with our existence. We have stolen a little of Gods being to make it ours. God has made us a gift of it. But we have stolen it. We must return it.”
—Simone Weil (19091943)