Field of Sets

In mathematics a field of sets is a pair where is a set and is an algebra over i.e., a non-empty subset of the power set of closed under the intersection and union of pairs of sets and under complements of individual sets. In other words forms a subalgebra of the power set Boolean algebra of . (Many authors refer to itself as a field of sets. The word "field" in "field of sets" is not used with the meaning of field from field theory.) Elements of are called points and those of are called complexes.

Fields of sets play an essential role in the representation theory of Boolean algebras. Every Boolean algebra can be represented as a field of sets.

Famous quotes containing the words field of, field and/or sets:

    ... many American Jews have a morbid tendency to exaggerate their handicaps and difficulties. ... There is no doubt that the Jew ... has to be twice as good as the average non- Jew to succeed in many a field of endeavor. But to dwell upon these injustices to the point of self-pity is to weaken the personality unnecessarily. Every human being has handicaps of one sort or another. The brave individual accepts them and by accepting conquers them.
    Agnes E. Meyer (1887–1970)

    Because mothers and daughters can affirm and enjoy their commonalities more readily, they are more likely to see how they might advance their individual interests in tandem, without one having to be sacrificed for the other.
    —Mary Field Belenky (20th century)

    There is a small steam engine in his brain which not only sets the cerebral mass in motion, but keeps the owner in hot water.
    —Unknown. New York Weekly Mirror (July 5, 1845)