Field of Fractions

In abstract algebra, the field of fractions or field of quotients of an integral domain is the smallest field in which it can be embedded. The elements of the field of fractions of the integral domain R have the form a/b with a and b in R and b ≠ 0. The field of fractions of R is sometimes denoted by Quot(R) or Frac(R).

Mathematicians refer to this construction as the quotient field, field of fractions, or fraction field. All three are in common usage, and which is used is a matter of personal taste. The expression "quotient field" may sometimes run the risk of confusion with the quotient of a ring by an ideal, which is a quite different concept.

A multiplicative identity is not required for the role of the integral domain; this construction can be applied to any non-trivial commutative pseudo-ring with no zero divisors.

Read more about Field Of Fractions:  Examples, Construction

Famous quotes containing the words field of and/or field:

    ... no young colored person in the United States today can truthfully offer as an excuse for lack of ambition or aspiration that members of his race have accomplished so little, he is discouraged from attempting anything himself. For there is scarcely a field of human endeavor which colored people have been allowed to enter in which there is not at least one worthy representative.
    Mary Church Terrell (1863–1954)

    Father calls me William, sister calls me Will,
    Mother calls me Willie, but the fellers call me Bill!
    —Eugene Field (1850–1895)