Bipolar and Multipolar Fields
In the early years of generator development, the stator field went through an evolutionary improvement from a single bipolar field to a later multipole design.
Bipolar generators were universal prior to 1890 but in the years following it was replaced by the multipolar field magnets. Bipolar generators were then only made in very small sizes.
The stepping stone between these two major types was the consequent-pole bipolar generator, with two field coils arranged in a ring around the stator.
This change was needed because higher voltages allow current to flow greater distances over small wires. To increase the output voltage, a DC generator must be spun faster, but beyond a certain speed this is impractical for very large power transmission generators.
By increasing the number of pole faces surrounding the Gramme ring, the ring can be made to cut across more magnetic lines of force in one revolution than a basic two-pole generator. Consequently a four-pole generator could output twice the voltage of a two-pole generator, a six-pole generator could output three times the voltage of a two-pole, and so forth. This allows output voltage to increase without also increasing the rotational rate.
In a multipolar generator, the armature and field magnets are surrounded by a circular frame or "ring yoke" to which the field magnets are attached. This has the advantages of strength, simplicity, symmetrical appearance, and minimum magnetic leakage, since the pole pieces have the least possible surface and the path of the magnetic flux is shorter than in a two-pole design
Read more about this topic: Field Coil
Famous quotes containing the word fields:
“Something told the wild geese
It was time to go.
Though the fields lay golden
Something whisperedSnow.”
—Rachel Lyman Field (18941942)