Fiber Bundle - Formal Definition

Formal Definition

A fiber bundle consists of the data (E, B, π, F), where E, B, and F are topological spaces and π : EB is a continuous surjection satisfying a local triviality condition outlined below. The space B is called the base space of the bundle, E the total space, and F the fiber. The map π is called the projection map (or bundle projection). We shall assume in what follows that the base space B is connected.

We require that for every x in E, there is an open neighborhood UB of π(x) (which will be called a trivializing neighborhood) such that π−1(U) is homeomorphic to the product space U × F, in such a way that π carries over to the projection onto the first factor. That is, the following diagram should commute:

where proj1 : U × FU is the natural projection and φ : π−1(U) → U × F is a homeomorphism. The set of all {(Ui, φi)} is called a local trivialization of the bundle.

Thus for any p in B, the preimage π−1({p}) is homeomorphic to F (since proj1-1({p}) clearly is) and is called the fiber over p. Every fiber bundle π : EB is an open map, since projections of products are open maps. Therefore B carries the quotient topology determined by the map π.

A fiber bundle (E, B, π, F) is often denoted

that, in analogy with a short exact sequence, indicates which space is the fiber, total space and base space, as well as the map from total to base space.

A smooth fiber bundle is a fiber bundle in the category of smooth manifolds. That is, E, B, and F are required to be smooth manifolds and all the functions above are required to be smooth maps.

Read more about this topic:  Fiber Bundle

Famous quotes containing the words formal and/or definition:

    Then the justice,
    In fair round belly with good capon lined,
    With eyes severe and beard of formal cut,
    Full of wise saws and modern instances;
    And so he plays his part.
    William Shakespeare (1564–1616)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)