Fermat's Last Theorem - History

History

Fermat left no proof of the conjecture for all n, but he did prove the special case n = 4. This reduced the problem to proving the theorem for exponents n that are prime numbers. Over the next two centuries (1637–1839), the conjecture was proven for only the primes 3, 5, and 7, although Sophie Germain proved a special case for all primes less than 100. In the mid-19th century, Ernst Kummer proved the theorem for regular primes. Building on Kummer's work and using sophisticated computer studies, other mathematicians were able to prove the conjecture for all odd primes up to four million.

The final proof of the conjecture for all n came in the late 20th century. In 1984, Gerhard Frey suggested the approach of proving the conjecture through a proof of the modularity theorem for elliptic curves. Building on work of Ken Ribet, Andrew Wiles succeeded in proving enough of the modularity theorem to prove Fermat's Last Theorem, with the assistance of Richard Taylor. Wiles's achievement was reported widely in the popular press, and has been popularized in books and television programs.

Read more about this topic:  Fermat's Last Theorem

Famous quotes containing the word history:

    Literary works cannot be taken over like factories, or literary forms of expression like industrial methods. Realist writing, of which history offers many widely varying examples, is likewise conditioned by the question of how, when and for what class it is made use of.
    Bertolt Brecht (1898–1956)

    ... in America ... children are instructed in the virtues of the system they live under, as though history had achieved a happy ending in American civics.
    Mary McCarthy (1912–1989)

    Books of natural history aim commonly to be hasty schedules, or inventories of God’s property, by some clerk. They do not in the least teach the divine view of nature, but the popular view, or rather the popular method of studying nature, and make haste to conduct the persevering pupil only into that dilemma where the professors always dwell.
    Henry David Thoreau (1817–1862)