Ernst Kummer and The Theory of Ideals
In 1847, Gabriel Lamé outlined a proof of Fermat's Last Theorem based on factoring the equation xp + yp = zp in complex numbers, specifically the cyclotomic field based on the roots of the number 1. His proof failed, however, because it assumed incorrectly that such complex numbers can be factored uniquely into primes, similar to integers. This gap was pointed out immediately by Joseph Liouville, who later read a paper that demonstrated this failure of unique factorisation, written by Ernst Kummer.
Kummer set himself the task of determining whether the cyclotomic field could be generalized to include new prime numbers such that unique factorisation was restored. He succeeded in that task by developing the ideal numbers. Using the general approach outlined by Lamé, Kummer proved both cases of Fermat's Last Theorem for all regular prime numbers. However, he could not prove the theorem for the exceptional primes (irregular primes) which conjecturally occur approximately 39% of the time; the only irregular primes below 100 are 37, 59 and 67.
Read more about this topic: Fermat's Last Theorem
Famous quotes containing the words theory and/or ideals:
“It is not enough for theory to describe and analyse, it must itself be an event in the universe it describes. In order to do this theory must partake of and become the acceleration of this logic. It must tear itself from all referents and take pride only in the future. Theory must operate on time at the cost of a deliberate distortion of present reality.”
—Jean Baudrillard (b. 1929)
“There is something to be said for government by a great aristocracy which has furnished leaders to the nation in peace and war for generations; even a Democrat like myself must admit this. But there is absolutely nothing to be said for government by a plutocracy, for government by men very powerful in certain lines and gifted with the money touch, but with ideals which in their essence are merely those of so many glorified pawnbrokers.”
—Theodore Roosevelt (18581919)