Fermat's Last Theorem - Did Fermat Possess A General Proof?

Did Fermat Possess A General Proof?

The mathematical techniques used in Fermat's "marvelous" proof are unknown. Only one detailed proof of Fermat has survived, the above proof that no three coprime integers (x, y, z) satisfy the equation x4 − y4 = z2.

Taylor and Wiles's proof relies on mathematical techniques developed in the twentieth century, which would be alien to mathematicians who had worked on Fermat's Last Theorem even a century earlier. Fermat's alleged "marvellous proof", by comparison, would have had to be elementary, given mathematical knowledge of the time, and so could not have been the same as Wiles' proof. Most mathematicians and science historians doubt that Fermat had a valid proof of his theorem for all exponents n.

Harvey Friedman's grand conjecture implies that Fermat's last theorem can be proved in elementary arithmetic, a rather weak form of arithmetic with addition, multiplication, exponentiation, and a limited form of induction for formulas with bounded quantifiers. Any such proof would be elementary but possibly too long to write down.

Read more about this topic:  Fermat's Last Theorem

Famous quotes containing the words possess and/or general:

    The very best reason parents are so special . . . is because we are the holders of a priceless gift, a gift we received from countless generations we never knew, a gift that only we now possess and only we can give to our children. That unique gift, of course, is the gift of ourselves. Whatever we can do to give that gift, and to help others receive it, is worth the challenge of all our human endeavor.
    Fred Rogers (20th century)

    In communist society, where nobody has one exclusive sphere of activity but each can become accomplished in any branch he wishes, society regulates the general production and thus makes it possible for me to do one thing today and another tomorrow, to hunt in the morning, fish in the afternoon, rear cattle in the evening, criticize after dinner, just as I have a mind, without ever becoming hunter, fisherman, shepherd or critic.
    Karl Marx (1818–1883)