In combinatorics, the factorial number system, also called factoradic, is a mixed radix numeral system adapted to numbering permutations. It is also called factorial base, although factorials do not function as base, but as place value of digits. By converting a number less than n! to factorial representation, one obtains a sequence of n digits that can be converted to a permutation of n in a straightforward way, either using them as Lehmer code or as inversion table representation; in the former case the resulting map from integers to permutations of n lists them in lexicographical order. General mixed radix systems were studied by Georg Cantor. The term "factorial number system" is used by Knuth, while the French equivalent "numération factorielle" was first used in 1888. The term "factoradic", which is a portmanteau of factorial and mixed radix, appears to be of more recent date.
Read more about Factorial Number System: Definition, Examples, Permutations, Fractional Values
Famous quotes containing the words number and/or system:
“Computers are good at swift, accurate computation and at storing great masses of information. The brain, on the other hand, is not as efficient a number cruncher and its memory is often highly fallible; a basic inexactness is built into its design. The brains strong point is its flexibility. It is unsurpassed at making shrewd guesses and at grasping the total meaning of information presented to it.”
—Jeremy Campbell (b. 1931)
“Never expect any recognition herethe system prohibits it. The cross is not affixed to the genius, no, the genius is affixed to the cross.”
—Franz Grillparzer (17911872)