Open Extension Topology
Let X be a topological space and P a set disjoint from X. Consider in X ∪ P the topology whose open sets are of the form: X ∪ Q, where Q is a subset of P, or A, where A is an open set of X.
For this reason this topology is called the open extension topology of X plus P, with which one extends to X ∪ P the open sets of X. Note that the subspace topology of X as a subset of X ∪ P is the original topology of X, while the subspace topology of P as a subset of X ∪ P is the discrete topology.
Note that the closed sets of X ∪ P are of the form: Q, where Q is a subset of P, or B ∪ P, where B is a closed set of X.
Being Y a topological space and R a subset of Y, one might ask whether the extension topology of Y - R plus R is the same as the original topology of Y, and the answer is in general no.
Note that the open extension topology of X ∪ P is smaller than the extension topology of X ∪ P.
Being Z a set and p a point in Z, one obtains the excluded point topology construction by considering in Z the discrete topology and applying the open extension topology construction to Z - {p} plus p.
Read more about this topic: Extension Topology
Famous quotes containing the words open and/or extension:
“Philosophy is written in this grand bookI mean the universe
which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language and interpret the characters in which it is written. It is written in the language of mathematics, and its characters are triangles, circles, and other geometrical figures, without which it is humanly impossible to understand a single word of it.”
—Galileo Galilei (15641642)
“Predatory capitalism created a complex industrial system and an advanced technology; it permitted a considerable extension of democratic practice and fostered certain liberal values, but within limits that are now being pressed and must be overcome. It is not a fit system for the mid- twentieth century.”
—Noam Chomsky (b. 1928)