Exponential Stability

Exponential Stability

In control theory, a continuous linear time-invariant system is exponentially stable if and only if the system has eigenvalues (i.e., the poles of input-to-output systems) with strictly negative real parts. (i.e., in the left half of the complex plane). A discrete-time input-to-output LTI system is exponentially stable if and only if the poles of its transfer function lie strictly within the unit circle centered on the origin of the complex plane. Exponential stability is a form of asymptotic stability. Systems that are not LTI are exponentially stable if their convergence is bounded by exponential decay.

Read more about Exponential Stability:  Practical Consequences, Example Exponentially Stable LTI Systems

Famous quotes containing the word stability:

    The message you give your children when you discipline with love is “I care too much about you to let you misbehave. I care enough about you that I’m willing to spend time and effort to help you learn what is appropriate.” All children need the security and stability of food, shelter, love, and protection, but unless they also receive effective and appropriate discipline, they won’t feel secure.
    Stephanie Marston (20th century)