Experiment - Contrast With Observational Study

Contrast With Observational Study

An observational study is used when it is impractical, unethical, cost-prohibitive (or otherwise inefficient) to fit a physical or social system into a laboratory setting, to completely control confounding factors, or to apply random assignment. It can also be used when confounding factors are either limited or known well enough to analyze the data in light of them (though this may be rare when social phenomena are under examination). In order for an observational science to be valid, confounding factors must be known and accounted for. In these situations, observational studies have value because they often suggest hypotheses that can be tested with randomized experiments or by collecting fresh data.

Fundamentally, however, observational studies are not experiments. By definition, observational studies lack the manipulation required for Baconian experiments. In addition, observational studies (e.g., in biological or social systems) often involve variables that are difficult to quantify or control. Observational studies are limited because they lack the statistical properties of randomized experiments. In a randomized experiment, the method of randomization specified in the experimental protocol guides the statistical analysis, which is usually specified also by the experimental protocol. Without a statistical model that reflects an objective randomization, the statistical analysis relies on a subjective model. Inferences from subjective models are unreliable in theory and practice. In fact, there are several cases where carefully conducted observational studies consistently give wrong results, that is, where the results of the observational studies are inconsistent and also differ from the results of experiments. For example, epidemiological studies of colon cancer consistently show beneficial correlations with broccoli consumption, while experiments find no benefit.

A particular problem with observational studies involving human subjects is the great difficulty attaining fair comparisons between treatments (or exposures), because such studies are prone to selection bias, and groups receiving different treatments (exposures) may differ greatly according to their covariates (age, height, weight, medications, exercise, nutritional status, ethnicity, family medical history, etc.). In contrast, randomization implies that for each covariate, the mean for each group is expected to be the same. For any randomized trial, some variation from the mean is expected, of course, but the randomization ensures that the experimental groups have mean values that are close, due to the central limit theorem and Markov's inequality. With inadequate randomization or low sample size, the systematic variation in covariates between the treatment groups (or exposure groups) makes it difficult to separate the effect of the treatment (exposure) from the effects of the other covariates, most of which have not been measured. The mathematical models used to analyze such data must consider each differing covariate (if measured), and the results will not be meaningful if a covariate is neither randomized nor included in the model.

To avoid conditions that render an experiment far less useful, physicians conducting medical trials, say for U.S. Food and Drug Administration approval, will quantify and randomize the covariates that can be identified. Researchers attempt to reduce the biases of observational studies with complicated statistical methods such as propensity score matching methods, which require large populations of subjects and extensive information on covariates. Outcomes are also quantified when possible (bone density, amount of some cell or substance in the blood, physical strength or endurance, etc.) and not based on a subject's or a professional observer's opinion. In this way, the design of an observational study can render the results more objective and therefore more convincing.

Read more about this topic:  Experiment

Famous quotes containing the words contrast with, contrast and/or study:

    Happiness ain’t a thing in itself—it’s only a contrast with something that ain’t pleasant.... And so, as soon as the novelty is over and the force of the contrast dulled, it ain’t happiness any longer, and you have to get something fresh.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    At this age [9–12], in contrast to adolescence, girls still want to know their parents and hear what they think. You are the influential ones if you want to be. Girls, now, want to hear your point of view and find out how you got to be what you are and what you are doing. They like their fathers and mothers to be interested in what they’re doing and planning. They like to know what you think of their thoughts.
    Stella Chess (20th century)

    To study the stars upon the wide, boundless sea, is divine as it was to the Chaldean Magi, who observed their revolutions from the plains.
    Herman Melville (1819–1891)