Expectation Value (quantum Mechanics) - Formalism in Quantum Mechanics

Formalism in Quantum Mechanics

In quantum theory, an experimental setup is described by the observable to be measured, and the state of the system. The expectation value of in the state is denoted as .

Mathematically, is a self-adjoint operator on a Hilbert space. In the most commonly used case in quantum mechanics, is a pure state, described by a normalized vector in the Hilbert space. The expectation value of in the state is defined as

(1) .

If dynamics is considered, either the vector or the operator is taken to be time-dependent, depending on whether the Schrödinger picture or Heisenberg picture is used. The time-dependence of the expectation value does not depend on this choice, however.

If has a complete set of eigenvectors, with eigenvalues, then (1) can be expressed as

(2) .

This expression is similar to the arithmetic mean, and illustrates the physical meaning of the mathematical formalism: The eigenvalues are the possible outcomes of the experiment, and their corresponding coefficient is the probability that this outcome will occur; it is often called the transition probability.

A particularly simple case arises when is a projection, and thus has only the eigenvalues 0 and 1. This physically corresponds to a "yes-no" type of experiment. In this case, the expectation value is the probability that the experiment results in "1", and it can be computed as

(3) .

In quantum theory, also operators with non-discrete spectrum are in use, such as the position operator in quantum mechanics. This operator does not have eigenvalues, but has a completely continuous spectrum. In this case, the vector can be written as a complex-valued function on the spectrum of (usually the real line). For the expectation value of the position operator, one then has the formula

(4) .

A similar formula holds for the momentum operator, in systems where it has continuous spectrum.

All the above formulae are valid for pure states only. Prominently in thermodynamics, also mixed states are of importance; these are described by a positive trace-class operator, the statistical operator or density matrix. The expectation value then can be obtained as

(5)  \langle A \rangle_\rho = \mathrm{Trace} (\rho A) = \sum_i \rho_i \langle \psi_i | A | \psi_i \rangle
= \sum_i \rho_i \langle A \rangle_{\psi_i} .

Read more about this topic:  Expectation Value (quantum Mechanics)

Famous quotes containing the words formalism, quantum and/or mechanics:

    It is sentimentalism to assume that the teaching of life can always be fitted to the child’s interests, just as it is empty formalism to force the child to parrot the formulas of adult society. Interests can be created and stimulated.
    Jerome S. Bruner (20th century)

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    It is only the impossible that is possible for God. He has given over the possible to the mechanics of matter and the autonomy of his creatures.
    Simone Weil (1909–1943)